How to Show Independence of Continuous Joint Random Variables
6.1.1 Joint Distributions and Independence
For three or more random variables, the joint PDF, joint PMF, and joint CDF are defined in a similar way to what we have already seen for the case of two random variables. Let $X_1$, $X_2$, $\cdots$, $X_n$ be $n$ discrete random variables. The joint PMF of $X_1$, $X_2$, $\cdots$, $X_n$ is defined as \begin{align}%\label{} \nonumber P_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n)=P(X_1=x_1,X_2=x_2,...,X_n=x_n). \end{align} For $n$ jointly continuous random variables $X_1$, $X_2$, $\cdots$, $X_n$, the joint PDF is defined to be the function $f_{X_1X_2...X_n}(x_1,x_2,...,x_n)$ such that the probability of any set $A \subset \mathbb{R}^n$ is given by the integral of the PDF over the set $A$. In particular, for a set $A \in \mathbb{R}^n$, we can write \begin{align}%\label{} \nonumber P\bigg((X_1,X_2,\cdots,X_n) \in A \bigg)=\int \cdots\int \limits_A\cdots \int f_{X_1X_2 \cdots X_n}(x_1,x_2, \cdots ,x_n) dx_1dx_2 \cdots dx_n. \end{align} The marginal PDF of $X_i$ can be obtained by integrating all other $X_j$'s. For example, \begin{align}%\label{} \nonumber f_{X_1}(x_1)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_1X_2...X_n}(x_1,x_2,...,x_n) dx_2 \cdots dx_n. \end{align} The joint CDF of $n$ random variables $X_1$, $X_2$,...,$X_n$ is defined as \begin{align}%\label{} \nonumber F_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n)=P(X_1 \leq x_1,X_2 \leq x_2,...,X_n \leq x_n). \end{align}
Example
Let $X, Y$ and $Z$ be three jointly continuous random variables with joint PDF \begin{equation} \nonumber f_{XYZ}(x,y,z) = \left\{ \begin{array}{l l} c(x+2y+3z) & \quad 0 \leq x,y,z \leq 1 \\ & \quad \\ 0 & \quad \text{otherwise} \end{array} \right. \end{equation}
- Find the constant $c$.
- Find the marginal PDF of $X$.
- Solution
-
-
\begin{align}%\label{} \nonumber 1&=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XYZ}(x,y,z)dxdydz\\ \nonumber &=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} c(x+2y+3z) \hspace{5pt} dxdydz\\ \nonumber &=\int_{0}^{1} \int_{0}^{1} c\left(\frac{1}{2}+2y+3z\right) \hspace{5pt} dydz\\ \nonumber &=\int_{0}^{1} c\left(\frac{3}{2}+3z\right) \hspace{5pt} dz\\ \nonumber &=3c. \end{align} Thus, $c=\frac{1}{3}$. - To find the marginal PDF of $X$, we note that $R_X=[0,1]$. For $0 \leq x \leq 1$, we can write \begin{align}%\label{} \nonumber f_X(x)&=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XYZ}(x,y,z)dydz\\ \nonumber &=\int_{0}^{1} \int_{0}^{1} \frac{1}{3}(x+2y+3z) \hspace{5pt} dydz\\ \nonumber &=\int_{0}^{1} \frac{1}{3}(x+1+3z) \hspace{5pt} dz\\ \nonumber &=\frac{1}{3}\left(x+\frac{5}{2}\right). \end{align} Thus, \begin{equation} \nonumber f_X(x) = \left\{ \begin{array}{l l} \frac{1}{3}\left(x+\frac{5}{2}\right) & \quad 0 \leq x \leq 1 \\ & \quad \\ 0 & \quad \text{otherwise} \end{array} \right. \end{equation}
-
-
Independence: The idea of independence is exactly the same as what we have seen before. We restate it here in terms of the joint PMF, joint PDF, and joint CDF. Random variables $X_1$, $X_2$, $...$ , $X_n$ are independent, if for all $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$, \begin{align}%\label{} \nonumber F_{X_1, X_2, ..., X_n}(x_1, x_2, ..., x_n)= F_{X_1}(x_1)F_{X_2}(x_2) \cdots F_{X_n}(x_n). \end{align} Equivalently, if $X_1$, $X_2$, ..., $X_n$ are discrete, then they are independent if for all $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$, we have \begin{align}%\label{} \nonumber P_{X_1, X_2, ..., X_n}(x_1, x_2, ..., x_n)= P_{X_1}(x_1)P_{X_2}(x_2) \cdots P_{X_n}(x_n). \end{align} If $X_1$, $X_2$, ..., $X_n$ are continuous, then they are independent if for all $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$, we have \begin{align}%\label{} \nonumber f_{X_1,X_2, ..., X_n}(x_1, x_2, ..., x_n)= f_{X_1}(x_1)f_{X_2}(x_2) \cdots f_{X_n}(x_n). \end{align} If random variables $X_1$, $X_2$, ..., $X_n$ are independent, then we have \begin{align}%\label{} \nonumber E[X_1 X_2 \cdots X_n]=E[X_1]E[X_2] \cdots E[X_n]. \end{align} In some situations we are dealing with random variables that are independent and are also identically distributed, i.e, they have the same CDFs. It is usually easier to deal with such random variables, since independence and being identically distributed often simplify the analysis. We will see examples of such analyses shortly.
Definition . Random variables $X_1$, $X_2$, ..., $X_n$ are said to be independent and identically distributed (i.i.d.) if they are independent, and they have the same marginal distributions: \begin{align}%\label{} \nonumber F_{X_1}(x)=F_{X_2}(x)=...=F_{X_n}(x), \textrm{ for all }x \in \mathbb{R}. \end{align}
For example, if random variables $X_1$, $X_2$, ..., $X_n$ are i.i.d., they will have the same means and variances, so we can write \begin{align}%\label{} \nonumber E[X_1 X_2 \cdots X_n]&=E[X_1]E[X_2] \cdots E[X_n] &(\textrm{because the $X_i$'s are indepenednt})\\ &= E[X_1]E[X_1] \cdots E[X_1]&(\textrm{because the $X_i$'s are identically distributed})\\ &=E[X_1]^n. \end{align}
The print version of the book is available through Amazon here.
Source: https://www.probabilitycourse.com/chapter6/6_1_1_joint_distributions_independence.php
Post a Comment for "How to Show Independence of Continuous Joint Random Variables"